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ABSTRACT

This paper presents and discusses a mathematical
formalism for simulation discrete event dynamics
(DED)-a  special type of “man-made” systems to
serve specific purposes of information processing.
The main objective of this work is to demonstrate
that the mathematical formalism for DED can be
based upon terminal model of Newtonian dynamics
which allows one to relax Lipschitz  conditions at
some discrete points.

A broad class of complex dynamical behaviors
can be derived from a simple differential equation
[1]:

~=xm sin cot, o = CO.S( (1)

The solution to Eq. (1) can be presented in a closed
form. Indeed, assuming that x -~0 at t = O, one
obtains a regular solution:

and a singular solution (an equilibrium point):

.jx=o (3)

Clearly, the Lipschitz.  condition at the equilibrium
point x = O fails since

As follows from (2.), two different solutions are
possible for “almost the same” initial conditions.
The futldamental  property of this result is that the
divergel~ce  of these solutions from x = O is
characterized by an unbounded parameter, U:

where tO is an arbitrarily small (but finite) positive
quantity. The rate of divergence (5) can be defined



in an arbitrarily small time interval, because the
initial infinitesimal distance between the solutions
(2) becomes finite during the small interval /.. One
should recall that in the classical case when the
L]pschitz condition is satisfied, the distance between
two diverging solutions can become finite only at t
- Q if initially this distance was infinitesimal.

The solution (2) and (3) co-exist at 1 = O, and that
is possible because at this point the Lipschitz
condition fails (see Eq. 4),
Since:

(6)

the singular solution (3) is unstable, and it departs
form rest following Eq. (3). This solution has two
(positive and negative) branches, and each branch
can be chosen with the same probability %. It
should be noticed that as a result of(4), the motion
of the particle can be initiated by infinitesimal
disturbances (that never can occur when the
Lipschitz condition is in place: an infinitesimal initial
disturbance cannot become finite in finite time).

Strictly speaking, the solution (2) is valid only in
the time interval

o<ts~
cd’ (7)

andatt=~ it coincides with the singular solution
(3). For t? 2rr/cJ, Eq. (2) becomes unstable, and
the motion repeats itself to the accuracy of the sign
in Eq. (2).

Hence, the solution performs oscillations with
respect to its zero value in such a way that the
positive and negative branches of the solution (2)
alternate randomly afler each period equal to 27t/w.

Let us introduce another variable:

j ,:

Afler the first

2n—

x, (,Y =Oa/x= O).

2nime interval t = —
co

After the second time interval t = fl

y:, +l?+h .Q

(8)

(9)

(lo)

Obviously, the variabley  performs an unrestricted
symmetric random walk: after each time period r =
27r/o  it changes its value on +%. The probability
jij,i) is governed by the following difference
equation:

XYJ  + :;) = +-y + -@ ‘ M> jMY = 1 ( 1 2 )
-“

where h is expressed by Eq. (9).

Eq. (11) definesf  as a function of two discrete
argume] Its:

y=tih, ondt=l~, ~=z, k,l = 0,1,2,...etc.
(L) (12)

For convenience,
variable y and / the
continuous versions.

we will keep for discrete
same notations as for their

By change of the variables:

z “ q(y)xv =  9-1(Z) (13)

one can obtain a stochastic process with a
prescribed probability distribution:



.
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I.JJ(z,i) = J [q)-’ (z),f ] I ~
. (14)

implemented by the dynamical system (1), (8), and
(13).

Actually this process represents a piecewise-
deterministic Markov process with the correlation
time ~. However, by introducing a new variable:

Zi(l)  = ~ aq X(t - q-r), aq = Comt (15)
q .0

instead of (8), one arrives at a non-Markov
stochastic process with the correlation time (n + 1 )~.
The deterministic part of the process can be
controlled if instead of(8) one applies the following
change of variables:

i = ~ /)q x2’q+l, bq = const (16)
q .0

In particular, the deterministic part of the process
can include a pause it for instance, Eq. (14) is
reduced to the following:

1;(/) = x(l) + X(t - T) (17)

Let us return to Eq. (1) and assume that it is
driven by a vanishingly  small input c:

i = X’n sinut+s,  e-O (18)

From the viewpoint of infortnaticm  processing, this
input can be considered as a massage or an event.
This massage can be i~nored  when x? # O, or when
X.o but the system is stable, i.e.,

x = ‘mm, 2nq...etc.  However, i t  becomes

significant during the instants of instability when
i = O, at / = O, n/2m,...eIc.  Indeed, at these
instants, the solution to (18) would have a choice to
be positive or negative if c = O, (see Eq. (2)).
However, with e # ()

sgn x = sgn e at t = O , z/2u,...etc. (19)

i.e. the sign ofe at the critical instances to time (19)
uniquely defines the evolution of the dynamical
system (18).

Actually the event c may represent an output of
a microsystem which uniquely controls the behavior
of the original dynamical system (19).

The probability N, t), is governed by the
following difference equation:

j?y,t + ~) = MY - W + (1 - P)jo + M (20)

$-.

where

{

1 lysg??&  = 1
0 [ysgn  & = -1p.

1 fc=o
i

(21)

Actually, the evolution of the probability
distnbuticm  in Eq. (20) is represented by rigid shifis
of the initial probability distribution jlj,O), unless
sgn c = 0,

The allplications  of the non-Lipschitz  dynamics
include stochastic mode] fitting for identification of
physical, biological and social systems, simulation of
collective behavior, models of neural intelligence
[1,2].
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